一个完善的教案可以帮助我们合理安排教学时间,教案可以帮助教师组织课堂互动,促进学生之间的合作和交流,82秘书网小编今天就为您带来了蒙氏十的分解教案6篇,相信一定会对你有所帮助。
蒙氏十的分解教案篇1
整式乘除与因式分解
一.回顾知识点
1、主要知识回顾:
幂的运算性质:
aman=am+n(m、n为正整数)
同底数幂相乘,底数不变,指数相加.
=amn(m、n为正整数)
幂的乘方,底数不变,指数相乘.
(n为正整数)
积的乘方等于各因式乘方的积.
=am-n(a≠0,m、n都是正整数,且m>n)
同底数幂相除,底数不变,指数相减.
零指数幂的概念:
a0=1(a≠0)
任何一个不等于零的数的零指数幂都等于l.
负指数幂的概念:
a-p=(a≠0,p是正整数)
任何一个不等于零的数的-p(p是正整数)指数幂,等于这个数的p指数幂的倒数.
也可表示为:(m≠0,n≠0,p为正整数)
单项式的乘法法则:
单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.
单项式与多项式的乘法法则:
单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.
多项式与多项式的乘法法则:
多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.
单项式的除法法则:
单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.
多项式除以单项式的法则:
多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.
2、乘法公式:
①平方差公式:(a+b)(a-b)=a2-b2
文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差.
②完全平方公式:(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.
3、因式分解:
因式分解的定义.
把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.
掌握其定义应注意以下几点:
(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;
(2)因式分解必须是恒等变形;
(3)因式分解必须分解到每个因式都不能分解为止.
弄清因式分解与整式乘法的内在的关系.
因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.
二、熟练掌握因式分解的.常用方法.
1、提公因式法
(1)掌握提公因式法的概念;
(2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数;
(3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.
(4)注意点:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.
2、公式法
运用公式法分解因式的实质是把整式中的乘法公式反过来使用;
常用的公式:
①平方差公式:a2-b2=(a+b)(a-b)
②完全平方公式:a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
蒙氏十的分解教案篇2
知识点:
因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。
教学目标:
理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。
考查重难点与常见题型:
考查因式分解能力,在中考试题中,因式分解出现的频率很高。重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。习题类型以填空题为多,也有选择题和解答题。
教学过程:
因式分解知识点
多项式的因式分解,就是把一个多项式化为几个整式的积。分解因式要进行到每一个因式都不能再分解为止。分解因式的常用方法有:
(1)提公因式法
如多项式
其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式。
(2)运用公式法,即用
写出结果。
(3)十字相乘法
对于二次项系数为l的二次三项式 寻找满足ab=q,a+b=p的a,b,如有,则对于一般的二次三项式寻找满足
a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则
(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行。
分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号。
(5)求根公式法:如果有两个根x1,x2,那么
2、教学实例:学案示例
3、课堂练习:学案作业
4、课堂:
5、板书:
6、课堂作业:学案作业
7、教学反思:
蒙氏十的分解教案篇3
一、活动目标
1. 激发幼儿参加数学活动的兴趣。
2. 使幼儿通过观察,比较,了解数的组成的互补和互换关系,发展幼儿初步的推理能力。
3. 知道6的各组分法。
二、活动准备
1.水彩笔6支。
2.小石子,纸诺干。
三、活动过程
1.复习5的分解组成。
(1)探索数的组成的互换关系。
教师:“谁知道5可以分成几和几?在黑板上写出5的各组分法。如下图所示:
5555
……
14412332
教师:“5可以分成1和4,5可以分成4和1.这两组分法什么地方一样,什么地方不一样?”
教师:“5可以分成2和3,5可以分成3和2.这两组分法什么地方一样,什么地方不一样?”
(2)用互换的方法写出5以内各数的组成。
教师在黑板上写出3、4、5各数的一种分法。请幼儿写出另一种。
2.学习6的分解组成。
(1)教师:“今天,老师带来了6支漂亮的水彩笔。大,考吧.幼,师,网这6支水彩笔分给两个小朋友,可以怎么分?”“请小朋友每人拿6粒小石子试一试,然后做记录。”
幼儿操作探索6的各种分法,教师观察指导。提醒幼儿分完,做记录,找出6的各种分法。
3.讨论。
(1)教师:“你是怎么分的?怎么记录的?”“你找到了几种分法?”“6有几种分法?”
(2)游戏。
教师(出示两个神秘袋):“请一名小朋友来摸一摸,里面分别有几块糖?然后合起来看看,一共有几块糖?调换其中一个袋中糖果的数目,换别的小朋友来摸。
四、活动延伸
把小石子放在活动室,引导幼儿在日常生活中操作。
五、温馨提示
1.引导幼儿用互换的方法写出6的各种分法。
2.幼儿操作作用的小石子要先洗干净。
六、活动反思
在6的分解和组成这一教学内容中,我注意创设有意义的活动情境,给孩子提供自主探究、合作交流的机会。允许孩子用自己不同的方法去学习,使不同的孩子在数学的学习上得到不同的发展,体现了因材施教的过程。
蒙氏十的分解教案篇4
教材简析:
10是一个特殊的数,既是计数的结果,又是计数单位,在计算中以10来进位和退位,因此单独安排一课时。在10的认识这一课时中,教材选用了小朋友喜欢的跳舞场面,使学生产生学习的、兴趣,情不自禁地试着去数一数共有几个小朋友,这就很好地体现了数学与生活的联系,数学在日常生活中的应用。
在想想做做中,第1题帮助学生理解10以内数的顺序,练习顺数和倒数,这既锻炼了学生在合作交流中的口头表达能力,又培养了学生的思维能力。第2题通过数10根捆成一捆的练习,为后面学习计数单位十作孕伏,同时也培养了学生的'动脑、动手实践能力。第3题是让学生自主探索出该怎样又快又准地数数,达到了巩固新知识的目的。第4题让学生在比较中复习10以内数的顺序。
教学重点:
让学生通过实践探索、合作交流,会独立认、写10,并掌握10以内数的顺序;教学难点是数出10根小棒捆成一捆,孕伏10个一就是1个十。
教学目标:
1、在具体情境中产生数数的欲望,在自主探索与合作交流中认、写10;理解10以内数的顺序;会比较10以内数的大小。
2、发展初步的动手操作能力、发散思维能力和语言表达?能力
3、初步孕伏10个一就是1个十的思想。感受数学与生活的联系,培养学好数学的情感。
教学过程:
一、创设情境,激发兴趣
讲述:瞧,这些小朋友给你们带来了一个节目。(《数鸭子》音乐声响起,10个小朋友正欢快地在台前跳舞)(表演完后)
今天可不是叫你们数鸭子了,赶紧数数刚才有几个小朋友在跳?舞吧!?
二、自主探索
1、出示挂图,进一步激起数数的兴趣,初步探索。
学生利用原有数数的经验争先恐后地数出共有10个小朋友。教师让学生上台作现场数数演示,其他学生对此作评价。教师鼓励不同的数数方法。
蒙氏十的分解教案篇5
活动目标:
复习5以内数的分解及组成,初步理解除一以外的数,都可以分成两个数,两个数合起来是原来的数。
活动准备:
数字卡若干、胸饰、幼儿操作材料若干、幼儿人手一张数字卡片放在口袋里。
活动过程:
一、开始部分:“复习5的分解”
导入,“我们来看这是数字几呢?”(5)我们将数字5分解,可以有几种分法?(有四种)分别是:(1和4、2和3、3和2、4和1)。小朋友真聪明,下面我们可以用5的分解来玩一个游戏,我说一个数字、请你也说一个数字,我和你们的数字合起来是“5”。如:“我说2”、幼儿答出“我说3”。游戏进行可根据音乐节奏拍手进行数次。
二、基本部分: “游戏”
1、“游戏玩得真高兴,我们又要到森林里去玩了,森林很远的,我们5人一组开火车去吧!
”“好了,我们到森林了,森林之王给我们准备了一个分一分的游戏,请小朋友看数字卡片,在音乐声停止的时候迅速分开站在线的两侧。(举例,请一组小朋友做示范)开始进行游戏。”
2、森林里还有一个更好玩的地方,看那是什么?(魔洞),这个魔洞只允许数字5过去,可我们小朋友也想过去怎么办呢?(先变成数字宝宝),请你们先将自己的数字宝宝请出来,看,向我这样变变变就变成数字宝宝了,呢们也快点变一变吧!小朋友看自己是数字宝宝几呢?你们的数字是5吗?怎样才能让我们的数字能够变成5呢?(2和3组合)真聪明,看我和她合起来是5,我们手拉手先过去了,你们也快点找一个与自己合起来是5的朋友手拉手、排好队一起过魔洞吧!
三、结束部分: 幼儿操作卡练习
今天玩得数字游戏高兴吗?我们把刚才的游戏记录下来好吗?(幼儿在教师的引导下进行记录)。
活动延伸:
引导幼儿在活动区中进行操作卡练习。使幼儿对今天的活动加以巩固、复习。
蒙氏十的分解教案篇6
教学目标:
1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式综合应用;能利用平方差公式法解决实际问题。
2、经历探究分解因式方法的过程,体会整式乘法与分解因式之间的联系。
3、通过对公式的探究,深刻理解公式的应用,并会熟练应用公式解决问题。
4、通过探究平方差公式特点,学生根据公式自己取值设计问题,并根据公式自己解决问题的过程,让学生获得成功的体验,培养合作交流意识。
教学重点:
应用平方差公式分解因式.
教学难点:
灵活应用公式和提公因式法分解因式,并理解因式分解的要求.
教学过程:
一、复习准备 导入新课
1、什么是因式分解?判断下列变形过程,哪个是因式分解?
①(x+2)(x-2)= ②
③
2、我们已经学过的因式分解的方法有什么?将下列多项式分解因式。
x2+2x
a2b-ab
3、根据乘法公式进行计算:
(1)(x+3)(x-3)= (2)(2y+1)(2y-1)= (3)(a+b)(a-b)=
二、合作探究 学习新知
(一) 猜一猜:你能将下面的多项式分解因式吗?
(1)= (2)= (3)=
(二)想一想,议一议: 观察下面的公式:
=(a+b)(a—b)(
这个公式左边的多项式有什么特征:_____________________________________
公式右边是__________________________________________________________
这个公式你能用语言来描述吗? _______________________________________
(三)练一练:
1、下列多项式能否用平方差公式来分解因式?为什么?
① ② ③ ④
2、你能把下列的数或式写成幂的形式吗?
(1)( ) (2)( ) (3)( ) (4)= ( ) (5) 36a4=( )2 (6) 0.49b2=( )2 (7) 81n6=( )2 (8) 100p4q2=( )2
(四)做一做:
例3 分解因式:
(1) 4x2- 9 (2) (x+p)2- (x+q)2
(五)试一试:
例4 下面的式子你能用什么方法来分解因式呢?请你试一试。
(1) x4- y4 (2) a3b- ab
(六)想一想:
某学校有一个边长为85米的正方形场地,现在场地的四个角分别建一个边长为5米的正方形花坛,问场地还剩余多大面积供学生课间活动使用?