为了提高课堂的吸引力,教案中可以融入故事情节,通过教案的实施,我们能够更好地实现课程标准的要求,82秘书网小编今天就为您带来了直线与圆位置关系教案5篇,相信一定会对你有所帮助。
直线与圆位置关系教案篇1
教学目标:
1.在作图、分类、辨析的活动中,了解两条直线的位置关系,理解在同一平面内两条直线的特殊的位置关系-----平行、垂直。
2.在辨析与理解知识的过程中,初步建立平行与垂直的空间观念,培养学生的空间想象能力。
3.在合作与探究的过程中,培养学生的主动探究与自主学习的意识。
教学重点:
在作图、分类、辨析的活动中,理解两条直线的两种特殊位置关系。
教学难点:
在合作、探究、辨析的过程中理解垂直和平行的意义。
教学准备:
课件、题纸、三角板、小棒、记号笔
教学过程:
一、借助回顾旧知,引出新知。
(一)对一条线的相关知识的回顾。
1.课件出示,回顾旧知。
(1)出示(线段)。
监控问题:这是(线段)。谁还记得它有什么特点?
(生:线段有两个端点,可以测量)
(2)将线段的一端延长,成为射线。
监控问题:现在呢?(射线),它有什么特点?
(生:射线可以向一端无限延长,不能测量)
课件操作:将射线还原成线段,再延长线段的另一端。
监控问题::它也是(射线)
(3)将射线还原成线段,同时延长线段的两端,成为直线。
监控问题:这是(直线)它的特点是什么来着?(直线没有端点,不可以测量。)
2.归纳:在这幅图上,你都能找到哪些我们学过的线?来给大家说一说,指一指。
看来,线段和射线都是直线的一部分。
(二)揭示课题:刚才,我们一起回忆了有关一条直线的知识。如果在这个屏幕上画两条直线,会是怎样的位置关系呢?这就是咱们今天研究的内容。(板书课题:两条直线的位置关系)
?设计意图:通过与学生的谈话,将旧知进行了复习,从而很自然地引出新知。】
二、借助分类、学生辨析,了解两条直线的位置关系。
(一)自主探究两条直线的位置关系
1. 请大家想像一下两条直线会是怎样的位置关系呢,画在纸上,也可以借助手中的小棒,先摆一摆,再画下来。每张纸上只画出一种,画大点让大家都看得见。你能想出几种就摆几种,就画几种。开始!
2.学生动手操作,教师巡视,搜集资源。
监控:(1)这是同学们的想法,看看,你还有什么补充吗?为了研究方便,我们把这种情况标上序号。(标号)
(2)我们一起来看看,既然都是直线,又知道直线是可以向两端无限延长的,咱们给这些直线延长延长,看看会有什么现象出现呢?(学生来延长)(换一种颜色,让学生延长)
(二)集体研讨,辨析两条直线的位置关系
1.引导学生分类,辨析。
监控问题:这么多种情况,我们怎么研究呢?(先分类)
请大家两人一组,根据两条直线的位置关系给它们分分类。可以把序号写在题纸的背面,一会儿咱们一起来讨论,开始!
2.集体研讨。
①相交与不相交
②引导学生分类,建立相交、不相交的概念,并板书。
(板书: 不相交 相交)
2.借助辨析,建立相关概念。
(1)建立平行的概念。
监控问题:
①师:我们先来看两条直线的这种位置关系,有人知道这样的两条直线叫什么吗?在生活中你见过吗?在哪儿见过?-----不相交
②数学中这两条直线的位置关系是平行,谁能用自己的话说一说什么是平行?
③我们一起来看看书上是怎么说的?(课件出示平行线的概念)
提问:跟我们说的意思差不多吧?刚才咱们说的和书中的有什么不一样的吗?(同一平面),这两条直线是在同一平面吗?为什么?(都在这张纸上)这两条直线呢?(黑板上画出一组),能再说说什么是平行吗?
④建立平行线的表示方法。“∥” a与b平行,可以记作:a∥b,读作a平行于b或b平行于a
(2)建立垂直的概念。
监控问题:
①这种情况我们称它为不相交,也就是平行,那你们说这种情况呢?对,相交。
提问:在这种相交的情况下,哪个最特殊?特殊在哪儿?
②建立垂直的概念。
a. 谁来用自己的话说一说什么是垂直?
b. 看书上的叙述。
c. 学习垂直的.表示方法。
③建立相交不垂直的概念
那这种呢?相交了,但不垂直,形成了两组对顶角,每组的对顶角是相等的。追问:那垂直呢?相交之后也形成了两组对顶角,它特殊在每组的对顶角都是相等的,都是90°其实只要是相交就会形成对顶角,这些知识我们到了中学还会继续学习。
④欣赏生活中的平行与垂直。(ppt)
其实,在我们的生活中有许多平行与垂直呢,我们一起来看看。(数学作业和课本中也能找到平行和垂直呢?)
⑤重合的处理:
预设:a.如果学生画图的时候出现了“重合”
监控问题:这个同学画出的一个平面内两条直线的位置关系和刚才我们研究的都不一样,你知道这是什么吗?(请画出图的同学介绍)课件演示:重合的过程 (两条直线有无数个交点)
b.如何学生没有在画图中出现,教师给图理解“重合”。
(3)小结:看来,在一个平面内,两条直线的位置关系除了相交和不相交,还会有重合。对于重合的两条直线,我们到了中学之后还会对这样的直线作进一步的研究。
?设计意图:通过学生自主探究、集体辨析,得到了一个平面内的两条直线的位置关系,并进行了分类研究,在这个过程中,充分发挥了学生的主动性和积极性,真正成为学习的主人。】
三、在不同的练习中巩固新知。
1、出示平面图形和组合图形。
过渡语:刚才我们了解了同一平面内,两条直线的位置关系,也在生活中看到了平行与垂直的例子,那如果是一个平面图形的呢?你还能找到平行或者是垂直吗?来,我们一起来试一试!要求:指出下面图形中的一组垂直与平行。(学生边指边说)
(1)平面图形中的平行与垂直。
追问:第五个,有互相垂直的两条边吗?
过渡语:你们真了不起!也能在平面图形中找到我们今天所学的知识,那如果是一个组合图形呢?还行吗?来,我们一起来看一看!
(2)在组合图形中寻找平行与垂直。
看来,要想验证是不是垂直,三角板帮了我们大忙,真是数学学习的好帮手。
2.深入研究平行与垂直的传递性。
(1) 摆一摆,把两根小棒都摆成和第三根小棒平行,看一看这两根小棒互相平行吗?
(2)把两根小棒都摆成和第三根小棒垂直。看一看这两根小棒有什么关系?
过渡语:我们看了,也找了,那如果让你们动手摆一摆呢?行吗?来,小组合作,请你按照要求动手摆一摆,互相说一说,看看你能有什么发现?开始!
监控:①哪组把你们摆的拿上来给我们大家来欣赏一下!再说说你们发现了什么?
②还有一个呢?先想象一下,猜猜看!然后再动手摆一摆进行验证!
③来给我们大家说一说吧!你们先猜的是什么?摆完之后呢?跟你们大家的想法一样吗?
小结:看来,数学知识有的时候不能单凭猜测,需要我们进行验证,才能知道答案是否正确!
四、结合板书,总结全课。
师:这节课我们一起研究了两条直线的位置关系,以后我们还会应用这些知识学习更多的知识。
五、板书设计:
两条直线的位置关系
同一平面内
不相交 相交 重合
平行“∥” (对顶角)
垂直 不垂直
直线与圆位置关系教案篇2
【知识要点】
1.三角形:由不在同一条直线上的三条线段首尾顺次链接所围成的封闭图形叫做三角形
这三条线段叫做这个三角形的边;(ab、bc、ca)
相邻两条边的公共端点叫做这个三角形的顶点;(a、b、c)
相邻两条边所夹的角叫做这个三角形的内角,又叫做这个三角形的角(∠a、∠b、∠c)
三角形的内角的邻补角叫做这个三角形的外角
2.三角形的表示为△abc
3.三角形的三条重要线段:高、中线、内角平分线(三条高所在的直线都交于一点,这个点叫做三角形的垂心;三条中线交于一点,这个点叫做三角形的重心;
三条内角平分线交于一点,这个点叫做三角形的`内心)
4.三角形内角和定理以及相关的结论
(1)三角形的内角和为180°
(2)直角三角形的两个锐角互余
(3)三角形的外角和为360°
(4)三角形的一个外角等于与它不相邻的两个内角的和
(5)三角形的一个外角大于与它不相邻的任何一个内角
5.三角形的三边关系定理
三角形的任意两边之和都大于第三条边;任意两边之差都小于第三条边
6.三角形具有稳定性
7.多边形:由在同一平面内,不在同一直线上的若干条线段首尾顺次连接所围成的封闭图形叫做多边形
这些线段叫做这个多边形的边;
相邻两条边的公共端点叫做这个多边形的顶点;
相邻两条边所夹的角叫做这个多边形的内角,又叫做这个多边形的角
多边形的内角的邻补角叫做这个多边形的外角
8.对角线:连结多边形不相邻的两个顶点的线段叫做多边形的对角线
由一个顶点出发的对角线有( n -3)条;( n 表示边数)
多边形共有条对角线( n 表示边数)
9.多边形的内角和及外角和
(1)多边形的内角和为(n-2).180°( n 表示边数)
(2)多边形的外角和为360°
阶段练习
一、回答下列各问题
1.什么是三角形?它有哪些元素?通常用什么符号来表示它及三个角所对的边?
2.为什么屋架、桥梁及电杆的支架多采用三角形的形状?
3.如果△abc的三条边长分别为(12、13、14)及(10、20、30),这样的三角形能成立吗?
为什么?
4.设△abc的边长分别为a、b、c,那么这三条边的边长须具有什么条件,才能将△abc画
出来
5.△abc中有几条角平分线?试画图说明
6.什么是三角形的高?一个三角形有几条高?三角形的高的位置是否一定在形内?为什么?
试画图说明
7.三角形的一条中线把这个三角形分成两部分,这两个部分的面积有什么关系?为什么?
8.三角形的三个内角分别为α、β、γ,则α+β+γ的值是多少?
9.三角形的一个外角与它不相邻的两个内角之间有什么关系?
二、填空题
1.三角形的外角和是内角和的_____________倍
2.四边形的外角和是内角和的____________倍
3.六边形的外角和是内角和的_______________倍
4.一个多边形的内角和是900°,则这个多边形是________边形
三、解答题
已知ac、ad是五边形abcde的对角线,求证:ab+bc+cd+de+ea>ac+cd+da
直线与圆位置关系教案篇3
恰当的信息技术与初中数学教学深度融合,课堂本着以学生为主体,教师为导体的原则,精心设计情境教学活动,为学生营造自主学习和探索交流的学习环境,活跃学生思维,激发学习兴趣.为提高教学质量,利用现代教育技术手段,采用启发式、讨论式、研究式的教学方法,让学生在自主探究、合作交流中提高学习积极性,培养学生分析问题、解决问题的能力。我以北师大版数学七年级下册《两条直线的位置关系》一课为例,谈谈如何应用101教育ppt引导学生由动手操作到理性思考,由自主探索到合作交流,由生活实际到建立模型解决问题,让学生积累数学活动经验,完成对本节知识的探索与交流。
一、教材分析:
本节是七下第二章相交线、平行线中的第一节,本节主要是了解平面内两条直线的位置关系,由学生动手画出相交线图形,观察图形产生具有特殊位置关系的对顶角的概念和对顶角相等的性质,由此图产生具有特殊数量关系的余角、补角的概念,由生活实例(打台球)引出并推导余角补角性质采用类比的方法,培养学生观察、推理、归纳等能力。
二、学情分析:
学生在小学已经认识了平行线、相交线、角,在七年级上册中,已经对角及其分类有了一定的认识。这些知识储备为本节课的学习奠定了良好的基础,使学生具备了掌握本节知识的基本技能。在前面知识的学习过程中,学生已具备了一定的图形认识能力和借助图形分析问题解决问题的能力;能够将直观与简单推理相结合;在合作探究的过程中,学生在以前的数学学习中学生已经经历了小组合作的学习过程,积累了大量的方法和经验,具备了一定的合作与交流能力。
基于教材特点与学生情况的分析,为有效开发各层次学生的潜在智能,制定教法、学法如下:
三、教法与学法:
1、遵循学生是学习的主人的原则,在为学生创造大量实例的基础上,,故选用探究式教学主动学习的教学策略以及动手实践,自主探索,合作交流的重要学习方式.引导学生根据现实生活的经历和体验及收集到的信息来理解理论知识。
2.借用多媒体课件辅助教学,力求使每个学生都能在原有的基础上得到发展,既满足了学生对新知识的强烈探索欲望,又排除学生对几何学习方法的缺乏,和学无所用的顾虑,让他们在学习过程中获得愉快与进步。
四、教学目标:
1.知识与技能:在具体情境中了解相交线、平行线、补角、余角、对顶角的定义,知道同角或等角的余角相等、同角或等角的补角相等、对顶角相等,并能解决一些实际问题。
2.过程与方法:经历操作、观察、猜想、交流、推理等获取信息的过程,进一步发展空间观念、推理能力和有条理表达的能力。
3.情感与态度:激发学生学习数学的兴趣,认识现实生活中蕴含着大量的与数学有关问题,培养学生用数学方法解决问题的能力。
教学重点:对顶角、余角、补角的概念及性质。
教学难点:余角、补角性质的应用。
五、教具准备:
多媒体课件、三角板
六、教学过程设计
新课标指出,数学教学过程是学生在教师指导下的数学学习活动,是师,是教师和学生互动的过程,是师生共同发展的过程。本课时我遵循“开放”的原则,重组教材,恰当地创设情境,以问题串的方式激发学生的好奇心和求知欲,通过独立思考,不断提出问题分析问题,并创造性地解决问题;通过动手操作、合作交流等方式,为学生构建了有效开放的学习环境。本节课共设计以下环节:第一环节:创设情境、引入课题;第二环节:动手实践、探究新知;第三环节:合作交流,再探新知;第四环节: 联系生活,解决问题;第五环节:学有所思,归纳总结; 第六环节:布置作业,能力延伸。
第一环节 创设情境 引入课题
活动内容一:两条直线的位置关系
教师展示一组生活图片,由学生观察图片,回答问题:
(1)图片中两条直线有哪几种位置关系?
引入课题:《两条直线的位置关系(1)》
出示本节教学目标、重难点。
(2)那么什么叫相交线和平行线呢?
结论:1.一般地,在同一平面内,两条直线的位置关系有两种;相交和平行。
2:定义:若两条直线只有一个公共点,我们称这两条直线为相交线。
在同一平面内,不相交的两条直线叫做平行线。
?设计意图】:利用生活图片引入课题,让学生体会数学与生活的联系,激发学生学习的兴趣,通过观察总结出同一平面内两条直线的位置关系,经历知识的形成过程中,激发学生学习积极性,从而提高学课堂效率,通过练习加深他们对概念的理解。
赋能路径:学生对平行线、相交线概念的表述不清楚,对于同一平面的重要性理解不到位,应大胆让学生表述,培养学生的语言表达能力,利用101ppt展示空间中两条异面直线存在既不相交也不平行的位置关系,从而更深入地理解同一平面的意义。
第二环节 动手实践 探究新知
动手实践一:
利用101中的几何画板让学生画出:两条直线ab和cd相交于点o。
通过观察图形,小组合作交流,尝试用自己的语言描述对顶角的定义。
赋能路径: 利用多媒体技术让直线cd绕着点o旋转,在旋转过程中发现具有这种位置关系的两角不会随着角度的变化而变化,在利用多媒体出示剪刀模型,随着剪刀的动画,让学生生动形象的理解对顶角相等这一性质,激发学习兴趣,从而突破本节教学重点。
巩固练习:
1、下列各图中,∠1和∠2是对顶角的是( )
2、如图3所示,有一个破损的扇形零件,利用图中的量角器可以量出这个扇形零件的圆心角的度数吗?你能说出所量角是多少度吗?为什么?
?设计意图】:通过创设生动有趣的活动情景,为学生提供了观察、操作、推理、交流等丰富的活动素材,使学生在自主学习的过程中,学会对顶角的概念及其性质。从而进一步培养学生抽象几何图形进行建模的能力。设计练习主要是检测学生对顶角的概念及其性质的应用的理解程度,体会数学与生活的联系,增加浓郁的学习氛围。
课堂实施情况:利用几何画板建立数学模型,提高学生运用信息技术工具来学习数学的兴趣,增强逻辑推理能力教学目标的完成。学生对于对顶角概念的表述不到位,教师应鼓励学生用自己的语言表述,强调反向延长线,规范语言。讨论对顶角相等这一性质时,教师积极引导,让学生充分思考,再合作交流,最后归纳、总结,让学生经历知识的形成过程。
第三环节 合作交流 、再探新知
利用学生动手操作画出的图形,探究补角、余角定义
补角定义:一般地,如果两个角的和是180°,那么称这两个角互为补角。
余角定义:如果两个角的和是90°,那么称这两个角互为余角。
强调:互余或互补是指两个角,与角的的位置无关
?设计意图】:在合作交流中,经历知识的形成过程,获得成功的乐趣,锻炼克服困难的意志,建立自信心,可以更好地掌握新知识。
赋能路径:利用几何画板画出的相交线图形,学生通过观察具有补角、余角位置关系的两角给出补角,余角定义,利用多媒体动画展示补角、余角定义与角的位置无关,定义只和两角的和是否是180度或90度有关,让学生更深刻理解补角余角定义,突破本节教学重点。
巩固练习:
问题1:指出下列图中,哪两个角互为余角?哪两个角互为补角
2、图中∠1、∠2、∠3互补吗?
?设计意图】:据学生活泼好动、争强好胜的心理,设置问题1和问题2可以更好地激发学生的参与意识,在竞争中加深对概念的理解,提升所编题的质量,促进合作交流的意识。
第四环节 联系生活 解决问题
动手实践二 :
打台球时,选择适当的方向,用白球击打红球,反弹后的红球会直接入袋,此时∠1=∠2,将图2.1—7抽象成图2.1—8,on与dc交于点o,∠don=∠con=90°,∠1=∠2
小组合作交流,解决下列问题:在图2.1—8中
问题1:哪些角互为补角?哪些角互为余角?
问题2:∠3与∠4有什么关系?为什么?
问题3:∠aoc与∠bod有什么关系?为什么?
归纳:同角或等角的补角相等。
同角或等角的余角相等。
巩固练习:
如图所示, 因为∠1+∠3=180°,∠2+∠3=180°,所以∠1= ,理由是 ________________.
?设计意图】:通过生动有趣的活动情景,培养学生观察、操作、推理、交流等活动能力,使学生在自主学习的过程中,经历知识形成过程,培养学生抽象几何图形进行建模的能力。通过巩固练习检测学生对余角、补角性质的应用情况。
赋能路径:利用多媒体动画演示打台球进球路径,更生动形象,吸引学生注意力,激发探索知识的欲望,让学生体会数学源于生活并运用于生活,让学生经历怎么把实际问题转化成数学问题,培养建立数学模型的能力,突破难点。
课堂实施效果:对于补角、余角的性质的推导是本节课的难点,教师应积极引导学生列出式子,让学生通过观察表达式得出补角的性质,再通过类比补角性质得出余角的性质。在巩固练习中,理由大部分填对顶角相等,对于补角性质的应用多加练习。
课堂检测:本环节利用多媒体技术设计一个超链接,每组选一道题,根据选题派学生代表回答问题,根据情况得分。
?设计意图】:本环节是本节课的一个亮点,以小组竞赛的形式完成课堂检测环节,既检测学生对本节重点知识掌握情况,活跃课堂气氛的同时,还培养学生拼搏进取的精神。
赋能路径:教师提前把设计好的练习提前展示在多媒体上,待新课讲完后,以小组竞赛形式出示,学生有小组竞赛的精神,同学们回答问题积极,并且对于回答不具体的同学,同小组同学积极补充,活跃了课堂气氛,启到了很好的教学效果。
第五环节 学有所思 归纳总结
你学到了哪些知识点?
你学到了哪些方法?
你认为还有哪些问题?
?设计意图】:本环节使学生把知识结构化、网络化,引导学生时刻注意新旧知识之间的联系;鼓励学生畅谈自己学习的知识和体会,激发学生对数学的学习兴趣与信心,培养学生独自梳理知识,归纳学习方法及解题方法的能力,体会与同伴分享成果的快乐过程。
课堂实施情况:学生们积极的对本节知识、学法进行归纳总结,对对不理解的问题课下进行反思。
第六环节 布置作业 能力延伸
基础题:1.习题2.1 第 1,2,3,4,5题
提高题: 2.已知一个角的补角是这个角余角的4倍,求这个角的度数。
3.如图,将一个长方形纸片按如图所示的方式折叠,使点a落在点a’处,点b落在b’处,并且点e,a’,b’在同一条直线上。
问题1:∠feg等于多少度?为什么?
问题2:∠fea与∠geb互余吗?为什么? 问题3:上述折纸的.图形中,还有哪些(除直角外外)相等的角?
?设计意图】:作业应该体现出课堂学习的延续性,因此本节课我也精心设计了一道探究性的题目,实现了作业分层,可以让不同程度的学生都能有不同的收获。
教学效果及推广:
课程标准要求初中学生在操作感知的基础上渗透理性思考,以体现自主学习、合作探究理,而七年级大部分学生的自主探索、合作意识不强,但对数学学习有着较浓厚的兴趣,思维比较开阔,在数学课堂中抓住学生的认知水平,从生活实际出发,培养学生学习兴趣、建立自信,亲身经历知识的形成,不断提高学生的观察、探索,合作、归纳等能力。另外班中还存在相当一部分学习有困难的学生,对于这部分学生应给予更多的关注,通过同桌儿小组学习等方式,让能力较强的学生带动这些学生尽量给能力较弱的学生创造表现的机会,使各层次的学生都能在学习中体验成功。
本课例较好实现了信息技术与传统教学的优势互补,搭建支架帮助学生实现从操作感知到自主探索、合作交流,充分体现学生的主体地位,从而顺应课程改革,提高课堂效率。
课程建设情况:
数学来源于生活,又运用于生活。本课时我遵循“开放”的原则,引导学生从身边熟悉的情境出发,使学生经历从现实生活中抽象出数学模型的过程,激发了学生的学习兴趣,恰当地创设情境,以问题串的方式激发学生的好奇心和求知欲,通过独立思考,不断提出问题分析问题,体验了知识的形成过程和发现的快乐,并创造性地解决问题,通过动手操作、合作交流等方式,为学生构建了开放有效的学习环境,同时联系生活,融合建模思想,让学生体会学习数学的乐趣。以小组竞赛的形式完成课堂检测,既对本节重点知识进行了考查,活跃了课堂气氛,又培养了学生拼搏进取的精神。
启示:课堂上让学生充分发表自己的见解,从激励学生的角度出发,给予学生一个充分展示自我的舞台。在活动中提高学生与他人合作交流的能力,激发学生的学习兴趣。针对不同的问题,应大胆放手给学生,注意培养学生抽象几何图形的能力,简单合情说理的能力,观察分析的能力,总结归纳的能力等。讨论时,应该留给学生充分的独立思考的时间,注重学生几何语言的培养,对课堂生成的问题,应予以重视,教师可以激励学生课后继续探究,将课内学习延伸到课外,开阔学生的视野。
直线与圆位置关系教案篇4
教学目标:
1、经历观察、操作、推理、交流等过程,进一步发展空间观念、推理能力和有条理表达的能力。
2、在具体情景中了解补角、余角、对顶角,知道等角的余角相等、等角的补角相等、对顶角相等,并能解决一些实际问题。
教学重点:
1、余角、补角、对顶角的概念
2、理解等角的余角相等、等角的补角相等、对顶角相等。
教学难点:
理解等角的余角相等、等角的补角相等。判断是否是对顶角。
教学方法:
观察、探索、归纳总结。
准备活动:
在打桌球的时候,如果是不能直接的把球打入袋中,那么应该怎么打才能保证球能入袋呢?
教学过程:
第一环节情境引入
活动内容:搜集生活中常见的图片,让学生从中找出相交线和平行线。
第二环节探索发现
内容一:观察图中各角与∠1之间的关系:
∠adf+∠1=180
∠adc+∠1=180
∠bdc+∠1=180
∠edb+∠1=180
∠2=∠1
教学中要鼓励学生自己去寻找,但是不要求学生说出图中所有的角与∠1的关系。在对图中角的关系的充分讨论的基础上,概括出互为余角和互为补角的概念。
提醒学生:互为余角、互为补角仅仅表明了两个角之间的.度量关系,并没有对其位置关系作出限制。(为下面的对顶角的学习作铺垫)
让学生探索出“同角或等角的余角相等,同角或等角的补角相等”的结论。鼓励学生用自己的语言表达,并说明理由。
内容二:
议一议:
(1)用剪刀剪东西的时候,哪对角同时变大或变小?
(2)如果将剪刀简单的表示为右图,那么∠1和∠2有什么位置关系?
(3)它们的大小有什么关系?能试着说明理由吗?
由此引出对顶角的概念和“对顶角相等”的结论。
第三环节小诊??
活动内容:判断下列说法是否正确
1(1)300,700与800的和为平角,所以这三个角互余。()
(2)一个角的余角必为锐角。()
(3)一个角的补角必为钝角。()
(4)900的角为余角。()
(5)两角是否互补既与其大小有关又与其位置有关()
2、你能举出生活中包含对顶角的例子吗?
3、下图中有对顶角吗?若有,请指出,若没有,请说明理由。
4、议一议:如上图所示,有一个破损的扇形零件,利用图中的量角器可以量出这个扇形零件的圆心角的度数吗?你能说出所量角是多少度吗?你的根据是什么?
第四环节课堂小结
小结:熟记
(1)余角、补角的概念。
(2)同角或等角的余角相等,同角或等角的补角相等。
(3)对顶角的概念和“对顶角相等”。
第五个环节布置作业
1、习题2.1数学理解1,2
习题2.1问题解决1,2
直线与圆位置关系教案篇5
一、主题分析与设计
本节课是苏科版义务教育课程标准实验教科书七年级数学(下册)第七章第2节内容——探索平行线的性质,它是直线平行的继续,是后面研究平移等内容的基础,是"空间与图形"的重要组成部分。
?数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以"生活·数学"、"活动·思考"、"表达·应用"为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。
二、教学目标
1、知识与技能:掌握平行线的性质,能应用性质解决相关问题。
2、数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。初中数学教育叙事
3、解决问题:通过探究平行线的性质,使学生形成数形结合的'数学思想方法,以及建模能力、创新意识和创新精神。
4、情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和团结合作、勇于探索、锲而不舍的精神。
三、教学重、难点
1、重点:对平行线性质的掌握与应用
2、难点:对平行线性质1的探究
四、教学用具
1、教具:多媒体平台及多媒体课件
2、学具:三角尺、量角器、剪??
五、教学过程
(一)创设情境,设疑激思
1、播放一组幻灯片。
内容:
①供火车行驶的铁轨上;
②游泳池中的泳道隔栏;
③横格纸中的线。
2、提问温故:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?
3、学生活动:针对问题,学生思考后回答——①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;
4、教师肯定学生的回答并提出新问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?从而引出课题:7。2探索平行线的性质(板书)
(二)数形结合,探究性质
1、画图探究,归纳猜想
教师提要求,学生实践操作:任意画出两条平行线(a ∥ b),画一条截线c与这两条平行线相交,标出8个角。(统一采用阿拉伯数字标角)
教师提出研究性问题一:
指出图中的同位角,并度量这些角,把结果填入下表:
教师提出研究性问题二:
将画出图中的同位角任先一组剪下后叠合。
学生活动一:画图————度量————填表————猜想
学生活动二:画图————剪图————叠合
让学生根据活动得出的数据与操作得出的结果归纳猜想:两直线平行,同位角相等。
教师提出研究性问题三:
再画出一条截线d,看你的猜想结论是否仍然成立?
学生活动:探究、按小组讨论,最后得出结论:仍然成立。
2、教师用《几何画板》课件验证猜想,让学生直观感受猜想
3、教师展示平行线性质1:两条平行线被第三条直线所截,同位角相等。(两直线平行,同位角相等)
(三)引申思考,培养创新
教师提出研究性问题四:
请判断两条平行线被第三条直线所截,内错角、同旁内角各有什么关系?
学生活动:独立探究————小组讨论————成果展示。
教师活动:评价学生的研究成果,并引导学生说理
因为a ∥ b(已知)
所以∠ 1= ∠ 2(两直线平行,同位角相等)
又∠ 1= ∠ 3(对顶角相等)
∠ 1+ ∠ 4=180°(邻补角的定义)
所以∠ 2= ∠ 3(等量代换)
∠ 2+ ∠ 4=180°(等量代换)
教师展示:
平行线性质2:两条平行线被第三条直线所截,内错角相等。(两直线平行,内错角相等)
平行线性质2:两条平行线被第三条直线所截,同旁内角互补。(两直线平行,同旁内角互补)
(四)实际应用,优势互补
1、(抢答)课本p13练一练1、2及习题7。2 1、5
2、(讨论解答)课本p13习题7。2 2、3、4
(五)课堂总结:这节课你有哪些收获?
1、学生总结:平行线的性质1、2、3
2、教师补充总结:
⑴用"运动"的观点观察数学问题;(如我们前面将同位角剪下叠合后分析问题)
⑵用数形结合的方法来解决问题;(如我们前面将同位角测量后分析问题)
⑶用准确的语言来表达问题;(如平行线的性质1、2、3的表述)
⑷用逻辑推理的形式来论证问题。(如我们前面对性质2和3的说理过程)
(六)作业
学习与评价p5 1、2、3(填空);4、5、6(选择);7、8(拓展与延伸)
六、教学反思:
数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为"过程"不仅能引导学生更好地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得"情感、态度、价值观"方面的体验。这节课的教学实现了三个方面的转变:
①教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。教师成为了学生的导师、伙伴、甚至成为了学生的学生,在课堂上除了导引学生活动外,还要认真聆听学生"教"你他们活动的过程和通过活动所得的知识或方法。
②学的转变:学生的角色从学会转变为会学,跟老师学转变为自主去学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境,不是简单地"学"数学,而是深入地"做"数学。
③课堂氛围的转变:整节课以"流畅、开放、合作、‘隐'导"为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以"对话"、"讨论"为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。
总之,在数学教学的花园里,教师只要为学生布置好和谐的场景和明晰的路标,然后就让他们自由地快活地去跳舞吧