六年级数学比例尺教案6篇

时间:2025-05-01 作者:lcbkmm

教师应根据学生的实际水平,调整教案的难度和深度,教案中应包含明确的学习目标,指导学生的自主学习,82秘书网小编今天就为您带来了六年级数学比例尺教案6篇,相信一定会对你有所帮助。

六年级数学比例尺教案6篇

六年级数学比例尺教案篇1

一、教学内容:

人教版六年级下册《比例尺》。

二、教学目标:

1、使学生理解比例尺的意义,掌握求比例尺的方法,并能用以解决简单的求比例尺的实际问题。

2、通过小组合作研讨,实践操作,培养学生的合作意识和创新思维能力。

3、体验数学与生活的联系,培养用数学眼光观察生活的习惯。

三、教学重点:

理解比例尺的意义。

四、教学难点:

掌握求比例尺的方法,并能熟练解答比例尺的有关问题。

五、教法要素:

1、已有的知识和经验:

﹙1﹚比的意义

﹙2﹚化简比

2、原型:

﹙1﹚分别画出5厘米和10米长的线段。

﹙2﹚插图内容:中国地图、机器零件图。

﹙3﹚例1将线段比例尺改写成数值比例尺。

3、探究的问题:

﹙1﹚为什么要确定图上距离与实际距离的比?什么叫比例尺?

﹙2﹚线段比例尺怎样改写成数值比例尺?

﹙3﹚怎样求一幅图的比例尺?

六、教学过程:

(一)情境导入

1脑筋急转弯

北京到上海的距离是1200千米,可是一只蚂蚁从北京到上海只用5秒钟,这是为什么?

生:它是在地图上爬的

出示一幅中国地图引出图上距离和实际距离。

2、让学生画一条长5厘米的`线段。﹙学生很快画完﹚

3、再画一条长10米的线段。﹙学生迟疑﹚

师:你有什么疑问吗?

生:本子没有那么长,画不出来。

师:那该怎么办呢?

小组讨论,然后在练习本上画一画

组织汇报交流,让学生说说自己画的线段是多少厘米,它是把10米长的线段进行怎样变化得到的。

师:由于你们的标准不一样,因此大家画的线段长度不一样,所以画图时应该有个统一的标准,这个标准就叫比例尺,今天我们就来研究比例尺的内容,板书:比例尺

二)探究与解决

1、探究比例尺的意义

(1)阅读课本53页上面的内容

(2)你认为什么叫比例尺?

让生说出自己画图的标准即比例尺,并分别说出1:100和1:200的意思。再用自己的语言叙述什么叫比例尺。

师:一幅图的图上距离与实际距离的比,叫做这幅图的比例尺。

板书:图上距离:实际距离=比例尺﹙或分数形式的比例尺﹚

2、认识数值比例尺和线段比例尺

师:有关比例尺的知识在生活中有很多的用处。

﹙1﹚出示:标有数值比例尺的中国地图

让生说出比例尺1:100000000的意思。﹙当学生回答出图上1厘米表示实际距离100000000厘米。师可引导学生说出也就是图上1厘米表示实际距离1000千米。﹚

﹙2﹚出示:机器零件图

说出图中的2:1表示什么意思。﹙图上2厘米表示实际距离1厘米,由于机器零件较小,需要把实际尺寸扩大。﹚

师:像1:100、1:100000000、2:1…这些比例尺有个特点,前项或后项都是1。为什么不是2或3或其他数呢?﹙生…﹚为了计算方便,一般都把前项或后项写成是1的比。像这样用数字比的方式表示的比例尺我们把它叫做数值比例尺。

﹙3﹚出示:标有线段比例尺的北京市地图

让生讨论线段比例尺表示的意思,并介绍线段比例尺。

过渡:那怎样将线段比例尺改写成数值比例尺呢?

3、线段比例尺改写成数值比例尺

学习例1:小组的同学互相讨论尝试改写。师板书例1。

师:谁能说说改写时要注意什么?

师生共同小结:

(1)图上距离与实际距离的单位不同,要把不同单位化成相同单位,50千米改写成用厘米作单位的量时,50后面应补5个0

比例尺是一个比,不带单位名称

(3)比的前项为1。

过渡:通过刚才的学习,我们认识了什么叫比例尺,还知道了有数值比例尺和线段比例尺,那你知道怎么算比例尺吗?

4、完成53页“做一做”

学生试做后,小组内交流做法。

全班交流,总结方法。﹙首先依据比例尺的意义确定比例尺的前项和后项,写出比,图上距离与实际距离的位置不要写错;前后项单位名称要统一;最后化简比,变成前项是1的比。﹚

(三)训练与应用

1、我会判断

﹙1﹚比例尺是一种测量长度的尺子。﹙﹚

﹙2﹚一幅图的比例尺是80:1,表示把实际距离扩大80倍。﹙﹚

﹙3﹚比例尺的后项一定比前项大。﹙﹚

2、完成练习十第1、2题

学生完成后,让生说一说是怎样想的。

3、完成练习十第3题

学生完成后,让生说说自己的想法。并观察这个比例尺是将实际距离扩大。

(四)小结与提高

引导学生谈谈本节课的收获并对自己的学习表现进行评价。

六年级数学比例尺教案篇2

教学资料:

?义务教育课程标准实验教科书数学》(人教版)六年级下册第47、48页,练习八第1—3题。

设计理念:

数学程标准指出,“数学课程不仅仅要思考数学自身的特点,更就遵循学生学习数学的心理规律”。学生数学概念的获得要在观察、比较、概括、归纳等数学活动中才能构成。对于“比例尺”这样的数学概念,抓住其外延和内涵设计有效的数学活动是促进学生发展的主要途径。

学情与教材分析:

“比例的应用”是在学生已经学习了比和比例的好处、比例的基本性质之后的一个教学资料。“比例尺”是运用数学解决生活问题的一个典型范例之一。本节课,要透过在生活中的应用,把握比例尺的内涵――图上距离与实际距离的比,认识两种不同的比例尺――数值比例尺和线段比例尺。比例尺的内涵是教学的一个重点,学生在学习时,对于比例尺的本质――比例尺是一个比,往往容易因为名称的误导产生歧义,对于由比例尺的规定形式――前项或后项为1,而产生的计算上的易错点,都是教学中需要个性关注的。

教学目标:

1、在实践活动中体验生活中需要的比例尺,能读懂两种形式的比例尺。

2、在操作、观察、思考、归纳等学习活动中理解比例尺的好处,正确计算比例尺,了解比例尺在实际生活中的各种用途。

3、感受数学在解决问题中的作用,培养亲近数学的良好情感。

教学准备:

多媒体课件

教学重点:

理解比例尺的好处

教学难点:

把线段比例转换成数值比例尺

教学过程:

一、激发兴趣,引入比例尺

(脑筋急转弯)

师:同学们,你们必须去过漳州,那你们坐车从华安到漳州大约需要多长时间?(1个多小时),但是有只蚂蚁却只用了4秒钟。你明白是怎样回事吗?

生猜:蚂蚁可能在从华安到漳州的地图上爬。

师:对了。蚂蚁爬的是地图上的图上距离,(板书:图上距离)而我们坐车所行的是从华安到漳州的实际距离。(板书:实际距离)

师:看,在这幅地图上(出示第一幅地图)从华安到漳州蚂蚁只用了4秒钟,(出示第二幅地图)在这幅地图上蚂蚁用4秒钟还能到达吗?(出示第三幅地图)在这幅地图上呢?

师:为什么同样是从华安到漳州,有的只需4秒钟就能到达,而有的却到达不了呢?(地图有大有小)

请同学们观察这几幅地图,它们虽然大小不同,但形状却一样,这是什么原因呢?(让学生思考片刻后才说,可先让学生说)是因为人们在制作这三幅地图时所用的比例尺不同,这就是我们这天要学习的资料:比例尺(板书课题)

?设计意图:脑筋急转弯意在激趣引出地图,对学生都比较熟悉的地图,透过“这几幅地图,它们虽然大小不同,但形状却一样,这是什么原因呢?”这个问题来引导学生思考,透过三张地图大小不一样,而表示的实际距离却相同,引起学生认知冲突,聚焦依据比例不同,表示的大小也不相同,从而引出比例尺,引导学生从生活中学习有关比例尺的资料。】

二、自主学习,认识比例尺

1、什么叫比例尺?它是尺吗?是比例吗?请同学们打开课本48页,自学48页的资料。

2、揭示比例尺的好处。

你们从书上了解到什么叫比例尺?(嗯,是个比板书于课题后)

前项是什么?后项呢?(在板书的图上距离与实际距离中加入“:”)

那就是说只要用图上距离比实际距离就能求出比例尺,还能写成什么形式?

你能说说这些比例尺的好处吗?

请同学们仔细观察这几个比例尺上的数字的变化以及这几幅地图的大小变化,你又有什么发现,同桌交流一下

比例尺前项都是1,后项数字越大,图上1厘米所表示的实际距离越长,所画出的图形就越小,后项数字越小,图上1厘米所表示的实际距离越短,所画出的图形就越大

?设计意图:学生自学可能因为自身学习潜力的差异而产生不同的效果,如何让不同学力的学生在自学中都能真正学有所获?问题引领是一个比较有效的方法。因此,我设计了以上三个问题,聚焦比例尺的内涵,帮忙学生清晰把握。】

3、练习:

明白了什么是比例尺,如果我想求一幅图的比例尺,那要怎样办呢?老师给你们数据你们会求出一幅图的比例尺吗?

①、一张桌子画在图纸上的高度是8厘米,实际高度是80厘米,求这幅图纸的比例尺是多少?

②、一栋楼房东西方向长40m,在图纸上的长度是50cm、这幅图纸的比例尺是多少

③、在一幅地图上,量得甲地到乙地的距离是4厘米,而甲地到乙地的实际距离是160千米,这幅地图的比例尺是多少?

注意:单位统??

要化简结果不带单位(因为它表示的是两个量之间的关系)

?设计意图:在学生理解比例尺的好处之后立刻呈现三道不同梯度的习题,一是让学生进一步理解掌握比例尺的实际好处,二是让学生正确计算比例尺,了解比例尺在实际生活中的各种用途。并能用自己的语言正确说明比例尺所表示的具体好处。】

4、认识放大比例尺

观察这三个比例尺,你有什么发现?(前项为1)也就是说图上距离比实际距离小,其实现实中还能见到这样的比例尺(课件出示一些精密零件的图纸)

看,把比例尺读出来,你有什么发现?(选一个说好处)

小结:比例尺根据它的作用可分为缩小比例尺和放大比例尺。(板书)通常状况下,为了计算的方便,把比例尺写成前项或后项是1的比。

5、认识线段比例尺

刚才我们认识的比例尺都是用数字来表示的,它们都叫做数值比例尺。请同学们再来看这幅比例尺(出示线段比例尺)它与数值比例尺有什么不同?

学会看线段比例尺。图上每一段都是长1厘米,每一厘米都相当于实际多少千米?

用线段来表示图上距离与实际距离的关系,这叫做线段比例尺

区别:形式不同,但都表示图上距离与实际距离的倍数关系

小结:比例尺根据表现形式的不同分为数值比例尺和线段比例尺。(板书)

6、把上面的线段比例尺改写成数值比例尺

(1)这个线段比例尺它表示图上1厘米相当于实际50千米,那你们会将它改写成数值比例尺吗?

(2)1厘米:50千米=1厘米:5000000厘米=1:5000000

(3)根据数值比例尺标出线段比例尺

小结:线段比例尺和数值比例尺是比例尺的两种基本形式、它们之间能够进行转换、把线段比例尺转换成数值比例尺只要把写出图上距离与实际距离的比再化简就能够了、

?设计意图:在具体情景中,透过操作、观察、思考、归纳等学习活动中理解放大比例尺、线段比例尺的好处以及线段比例尺和数值比例尺两种比例尺基本形式之间的转换,并准确理解比例尺的书写特征。】

三、巩固练习,灵活运用

(一)填一填

1、在比例尺是1:2000的地图上,图上距离1厘米表示实际距离()厘米或()米

2、在比例尺是1:250000的地图上,图上距离1厘米表示实际距离(千米。

3、在比例尺是1:4000000的地图上,图上距离是实际距离的(),实际距离是图上距离的()倍,把这个数值比例尺该成线段比例尺是

(二)辨一辨

1、所有的比例尺的前项都是1。()

2把一个电脑零件放大到原先的100倍画在图纸上,应选用1:100的比例尺。()

3、比例尺就是一把尺子。()

4、一幅地图的比例尺是1:50000厘米。()

5、一幅图的比例尺是8:1,这幅图所表示的实际距离大于图上距离。()

(三)、选一选

1、用图上距离5厘米,表示实际距离200米,这幅图的比例尺是()

5:200b、c、1:4000厘米

2、长4厘米的零件,画在图纸上是40毫米,这幅图的比例尺是()

1:10b、10:1c、1:1d、1

3、线段比例尺改成数值比例尺是()

a、1:23b、1:2300000c、1:2300000km

?设计意图:透过填一填、辨一辨、选一选等不同形式的练习让学生体会比例尺在生活中的.应用,能够解决实际问题。同时透过具体情景,感受数学与生活的紧密联系】

四、课后延伸

选取适宜的比例尺画图

红光小学有一块长方形草坪,长85米,宽30米,把这块草坪按必须的比缩小,你能在纸上画出这个长方形草坪的平面图形吗?(1:1000、1:5001:10000)

结论:一幅图的比例尺由纸张的大小来决定。

?设计意图:让学生选用比例尺解答,以此培养学生思维的灵活性、这样让孩子在获得知识的同时,培养了潜力,让学生真真切切的感受到生活中有数学,生活中处处有数学,提高了学生学数学用数学的意识。】

五、谈学后体会。这节课你学到了什么?

?设计意图:让学生回顾学习过程,反思评价,再一次体验学习经历,促进学生对知识的掌握。】

六年级数学比例尺教案篇3

教学内容:

教科书30到32页。

教学目标:

1、使学生理解比例尺的意义,并能求出平面图的比例尺和根据比例尺求出实际距离。并能应用解决生活中的实际问题。

2、 通过小组合作研讨、实践操作,培养学生的合作意识和创新思维的能力。

3、 通过教学情境,培养学生热爱祖国的思想感情。

教学过程

一、 导入新课

1、 同学们,今天老师请你们当回设计师,请大家将我们教室占地的平面图画在白纸上。(长8米、宽6米)

2、 请画好的将自己的作品贴在黑板上。有不一样的请你贴上来。

3、 按大小分类。(讨论后说明随意画的长方形不是教室的平面图)

4、 讨论:将这么大的教室画到图上你采用了什么办法?(缩小)。为什么这些图有大有小呢?

5、 分别请同学说说自己画的设想。

6、 在同学们贴上的纸上介绍图上距离、(画在图上的8厘米、6厘米就是图上距离)。实际距离(同学们量出的教室的长8米,宽6米就是实际距离。同学们缩小的倍数就是你这幅图的比例尺。请你写上自己的比例尺。

7、 板书课题。“认识比例尺”

二、 新课展??

1、自学课文

让学生看课本上的第56页,初步接触图上距离和实际距离的比叫做比例尺。比例尺=图上距离比实际距离

说明:我们所缩小的倍数,一般取图上距离与实际距离的比,为计算方便通常把比例尺写成前项是1的比。

改写自己所画的图的比例尺。

2、出示中国地图(投影)

t;1>找出这幅地图的比例尺:1:30000000

(电脑演示放大效果)

介绍线段比例尺。你能看懂它的意思吗?与数值比例尺比较。(线段比例尺操作性强的,便于估计)。

t;3>你能从地图上大致的估计上海到北京的距离吗?小组讨论、反馈。评价各种计算的方法。板书:图上距离∶比例尺=实际距离

t;5>小组反馈,评比优秀方案。

t;2>电脑课件演示。

t;4>根据讨论板书:

补充板书:

把实际距离按原来的大小画出来,比例尺就是1:1

三、 练习

1|试一试。

四、 作业:31页练一练。

六年级数学比例尺教案篇4

一、教学目标:

1、让学生在实践活动中体验生活中需要比例尺。

2、通过观察、操作、交流,体会比例尺的实际意义,了解比例尺的含义。

3、体验数学与生活的联系,培养学生用数学的眼光观察生活的习惯。

二、教学重点:

正确理解比例尺的含义,并利用比例尺的知识解决生活中的实际问题。

三、教学难点:

运用比例尺的知识,通过测量、估算、计算等活动,学会解决生活中的一些实际问题。

四、教学过程。

(一)、开门见山,引发猜想。

师:今天我们要学习的内容是“比例尺”,你们有谁听说过比例尺吗?请你猜一猜、想一想比例尺可能与什么有关系?

请同学们分小组互相说一说,再集体交流。

(二)自学课本、探讨新知。

1、学生集体交流自己的猜想教师及时板书,同时作一些补充,并按以下的教学顺序呈现:

(1)什么叫比例尺?

(2)比例尺有几种类型?他们分别在什么情况下使用?

(3)比例尺要用数值来表示要写成怎样的比?

(4)比例尺是尺子吗?

(5)比例尺与比例有什么关系?

请同学们带着这些问题自学课本。学生自学课本后再交流。

2、组织集体反馈,质疑自学和交流后的想法。

(1)当学生对前三个问题作了回答之后,这时教师追问:缩小比例尺或放大比例尺的前项或后项是1的比有什么好处呢?

教师让学生继续观察教材上的地图想一想。

接着教师出示一幅中国地图,它的比例尺是1:100000000,说明了什么?

师:也就是实际有多少千米?

师:如果图上两点之间的距离是2厘米,那么实际就是几千米?

(2)师出示第二幅北京市的地图,这幅地图上比例尺又是怎样表示的?(学生通过观察线段比例尺说出用1厘米的线段表示了实际的50千米)

师追问:如果实际距离是150千米,画在地图上应该是几厘米?

(3)教师出示一幅扩大比例尺2:1,这又是什么意思?

学生回答后教师追问:如果实际长是4厘米,画在这张地图上要画几厘米?

(4)如果把一个扩大比例尺3:1写成1:3,把缩小比例尺1:3000000写成3000000:1,行吗?

3、探讨比例尺和尺子的关系。

谁来说一说比例尺是尺子吗?大家认为不一样在哪里?有关系又有怎样的关系?

师:比例尺实际上是一个比,这个比又好像是一把尺子,用它来表示图上距离与实际距离的倍数关系。

4、探讨比例尺与比例的关系。

比例尺与比例有什么关系?教师提出比例尺是一个比,而我们学过的比例又是什么意思呢?

师:如果告诉你一幅地图的比例尺是1:30000,在这幅图上量得两点之间的距离是3厘米,则两点之间的实际距离是多少米?

如果测得这幅图上两点之间的距离是5厘米呢?

教师随手写下3:90000=1:30000,5:150000=1:30000

师:图上任意两点之间的距离与对应的实际距离的比都等于比例尺。当比例尺一定时,则图上距离与实际距离成了什么关系?

(三)、逐层练习,巩固新知。

1、在一张地图上,量得两点之间的距离是5厘米,而这两点之间的实际距离是150千米,则这幅地图的比例尺是( )。

2、有一个手机零件,实际长是9毫米,画在地图上是9厘米,那么这张图纸的比例尺是多少?

3、在一幅比例尺为1:500的平面图上,量得长方形教室的长为3厘米,宽为2厘米,请回答下面的问题:

(1)请算出这个长方形教室的图上面积与实际面积。

(2)请算出这个长方形教室图上面积与实际面积的比。

(四)、回顾新知,小结提升。

通过这节课的学习,你有什么收获?

六年级数学比例尺教案篇5

教学过程 :

一、导人新课

教师:上节课我们学习了一些比例尺的知识,我们学过的比例尺都是用数值来标明的,如比例尺1:10000就表示图上距离是l厘米实际距离就是10000厘米,像这样的比例尺叫做数值比例尺。除了数值比例尺外,还有。什么是线段比例

尺呢:这就是我们这节课要学习的内容。(板书课题)

二、新课

教师:是在图上附有一条注有数量的线段。用来表示和地面上相对应的实际距离。同学们可以翻开教科书第16页.看右下角有一幅地图。地图的下面就 有一条。它上面有0、50和100几个数,还注明了长度单位千米。这些数和单位表示什么意思呢?大家量一量从0到50这段线段有多长。(1厘米。)从50到100呢?(也是1厘米。)从0到50就表示地图上1厘米的距离相当于地面上50千米的实际距离。从0到100就表示地图上2厘米的距离相当于地面上100千米的实际距 离。

然后教师问:

l如果知道了两个城市之间的图上距离,你能不能计算出这两个城市之间的实际距离?

让学生在地图上找到沈阳和长春这两个城市,并量出它们的距离是多少厘米。再想一想:要求地面上这两个城市之间的实际距离大约是多少千米,该怎样计算?

引导学生想:1厘米.的图上距离代表地面上多少千米的实际距离,(50千米。)我们量出沈阳到长春的图上距离是5.5厘米,就代表几个50千米的实际距离。(5.5个50千米。)怎么列式计算?

让学生说怎样列式。教师板书:505.5=275(千米)

之后,进一步提出:

你能不能把这个地图上的改写成数值比例尺?怎样改写?(因为图上1厘米相当于地面上50千米的实际距离,现在图上距离和实际距离的.单位不同,根据图上距离:实际距离=比例尺,要把图上距离和实际距离的单位化成同级单位,50千米等于5000000厘米。所以这条改写成数值比例尺就是1:5000000。)

教师板书出数值比例尺。

三、课堂练习

完成练习五的第49题:

1.第5题,让学生独立填表:填表前,要提醒学生图上距离的单位应用什么,实际距离的单位应用什么。

2.第8题,让学生独立计算。集体订正后,让学生按照东南西北的方位说说拖拉机站、电影院、汽车站和供销社离学校的距离。如,电影院在学校的南面,距学校200米;拖拉机站在学校的西北面,距学校2500米。

3.第9题,让学生先求出试验田长和宽的图上距离,然后画出平面图,并且要注意在平面图上注明比例尺。

六年级数学比例尺教案篇6

教学要求:

1.使学生认识比例尺的意义,学会求一幅平面图的比例尺。

2.使学生感受数学在解决问题中的作用,提高学生学习数学的兴趣和信心。

教学重点:

认识比例尺的意义。

教学难点:

求一幅平面图的比例尺。

教学过程:

一、铺垫孕伏:

1.填空

1千米=( )米 1米=( )分米 1分米=( )厘米 1厘米=( )毫米

30米=( )厘米 15千米=( )厘米 300厘米=( )分米

2.解比例(口述过程)

5/x=1/4 x/60=1/20

二、自主探究:

教学比例尺的意义

1.出示一张校舍平面图。

说明:这是学校的平面图,它是按照我们所学的比例知识,按照一定比例缩小后画在图纸上的。图里所量出的长度叫图上距离,与图上对应的地面上的长度是实际距离。(再举例说明,并板书:图上距离 实际距离)

2.出示例1

让学生算出结果。指名口答.老师板书解题方法和结果。再让学生说说求这个问题时要注意什么问题?(统一单位)提问:从求出的结果来看,你知道这张平面图的图上距离和实际距离的比是多少?(板书:图上距离和实际距离的比)

3.比例尺的意义。

在我们的日常生活中处处都有数学,经常要用到数学。像上面这样的问题,就通过数学方法,把实际的大小按图上距离和实际距离的比画了出来。在绘制地图和其他平面图时,我们把图上距离与实际距离的比,叫做这幅图的'比例尺。(板书:叫做比例尺)提问:什么是一幅图的比例尺?根据黑板上这句话想一想,比例尺是怎样得到的?(板书:图上距离:实际距离=比例尺)上面题里平面图的比例尺是多少,(板书:1 :50000)你现在知道比例尺是用什么形式表示的吗?强调比例尺是一个比。说明为了计算简便,通常把比例尺写成前项为l的比,这种比例尺叫做数值比例尺。

4.线段比例尺。

提问:你知道上面所述的比例尺表示的具体意义吗,(1厘米表示实际距离50000厘米,也就是500米)说明比例尺还可以用线段来表示。提问:谁来说一说这幅线段比例尺表示的具体意义。

三、组织练习

1. 判断下面这段话中,哪些是比例尺,哪些不是?为什么?

(1) 图上长与实际长的比是1/400。( )

(2) 图上宽与实际宽的比是1:400。( )

(3) 图上面积与实际面积的比是1:160000。( )

(4) 实际长与图上长的比是400:1。( )

让学生做在作业本上,小组交流,再集体订正。

四、课堂小结

这节课学习了什么内容,(板书课题)你学到了什么?在本节课的学习中有什么体会?