幂函数与二次函数教案8篇

时间:2025-05-26 作者:betray

一份优秀的教案能够使教师与学生之间建立良好的互动关系,通过有效的教案设计,教师能够帮助学生建立知识框架,82秘书网小编今天就为您带来了幂函数与二次函数教案8篇,相信一定会对你有所帮助。

幂函数与二次函数教案8篇

幂函数与二次函数教案篇1

一、教材及学情分析

?二次函数的图像与性质》是北师大版九年级下册第二章第二节的内容,在学生已经学习过一次函数(包括正比例函数)、反比例函数的图像与性质,以及会建立二次函数模型和理解二次函数的有关概念的基础上进行的,它既是前面所学知识的应用、拓展,是对前面所学一次函数、反比例函数图像与性质的一次升华,又是今后学习《确定二次函数的表达式》《二次函数的应用》、《二次函数与一元二次方程》的预备知识,又是学生高中阶段数学学习的基础知识,它在教材中起着非常重要的作用。另外,本节课最大特点,是结合图形来研究二次函数的性质,这充分体现了一个很重要的数学思想——数形结合数学思想。因此,这一节课,无论是在知识上,还是对学生动手能力培养上都有着十分重要的作用。

二、教学目标及重、难点分析

通过分析,我们知道,《二次函数的图像与性质》在整个教材体系中,起着承上启下的作用,有着广泛的应用。我认为这节课的重点是:作出函数=ax2+c的图象,比较函数=ax2和函数=ax2+c的异同,了解它们的性质;函数=ax2+c的图象与性质的理解,掌握抛物线的上下平移规律是本节课的难点。

知识与技能目标

(1) 会做函数=ax2和=ax2+c的图象,并能比较它们的异同;理解a,c对二次函数图象的影响,能正确说出两函数的开口方向,对称轴和顶点坐标;

(2) 了解抛物线=ax2上下平移规律。

过程与方法目标

本节课,过程是由抽象到直观,再由直观到抽象(既二次函数=ax2+c的关系式——作出图像——说出二次函数=ax2+c的图像与性质),培养学生分析问题、解决问题的能力,培养学生观察、探讨、分析、分类讨论的能力。

情感、态度与价值观

引导学生养成全面看问题、分类讨论的学习习惯,通过直观多媒体演示和学生动手作图、分析,激发学生学习数学的积极性。

三、教学结构设计

建立以“实施主体性教学,培养学生自主探究的能力”为主的课堂教学结构模式——学教结合式。让学生先自己动手画图,然后由老师来演示,这样从直观的看图观察,思考,提问,容易激发学生的求知欲望,调动学生学习的兴趣。以“学教结合”为模式的课堂结构设计为“三个阶段”:

①准备阶段 教师先从回忆函数=ax2图象与性质,从而导入二次函数=ax2+c的图像与性质,进而带出本节课的学习目标。

②参与阶段 学生围绕目标自我表现,相互交流,启发理解。

③应用与升华阶段 这一阶段是让学生从“学会”到“会学”的升华。延伸阶段要做到“三化”,一是知识的深化,二是知识向能力、技能的转化,三是学习方法的固化,即演练巩固,牢固掌握其方法。

幂函数与二次函数教案篇2

学习目标:

1、能解释二次函数 的图像的位置关系;

2、体会本节中图形的变化与 图形上的点的坐标变化之间的关系(转化),感受形数 结合的数学思想等。

学习重点与难点:

对二次函数 的图像的位置关系解释和研究问题的数学方法的感受是学习重点;难点是对数学问题研究问题方法的感受和领悟。

学习过程:

一、知识准备

本节课的学习的内容是课本p12-p14的内容,内容较长,课本上问题较多,需要你操作、观察、思考和概括,请你注意:学习时要圈、点、勾、画,随时记录甚至批注课本,想想那个人是如何研究出来的。你有何新的发现呢?

二、学习内容

1.思考:二次函数 的图象是个什么图形?是抛物线吗?为什么?(请你仔细看课本p12-p13,作出合理的解释)

x -3 -2 -1

0 1 2 3

类似的:二次函数 的图象与函数 的图象有什么关系?

它的对称轴、顶点、最值、增减性如何?

2.想一想:二次函数 的'图象是抛物线吗?如果结合下表和看课本p13-p14你的解释是什么?

x

-8 -7 -6 -3 -2 -1 0 1 2 3 4 5 6

类似的:二次函数 的图象与二次函数 的图象有什么关系 ?它的对称轴、顶点呢?它的对称轴、顶点、最值、增减性如何呢

三、知识梳理

1、二次函数 图像的形状,位置的关系是:

2、它们的性质是:

四、达标测试

⒈将抛物线y=4x2向上平移3个单位,所得的抛物线的函数式是 。

将抛物线y=-5x2+1向下平移5个单位,所得的抛物线的函数式是 。

将函数y=-3x2+4的图象向 平移 个单位可得y=-3x2的图象;

将y=2x2-7的图象向 平移 个单位得到可由 y=2x2的图象。

将y=x2-7的图象向 平移 个单位 可得到 y=x2+2的图象。

2.抛物线y=-3(x-1)2可以看作是抛物线y=-3x2沿x 轴 平移了 个单位;

抛物线y=-3(x+1)2可以看作是抛物线y=-3x2沿x轴 平移了 个单位.

抛物线y=-3(x-1)2的顶点是 ;对称轴 是 ;

抛物线y=-3(x+1)2的顶点是 ;对称轴是 .

3.抛物线y=-3(x-1)2在对称轴(x=1)的左侧,即当x 时, y随着x的增大而 ; 在对称轴(x=1)右侧,即当x 时, y随着x的增大而 .当x= 时,函数y有最 值,最 值是 ;

二次 函数y=2x2+5的图像是 ,开口 ,对称轴是 ,当x= 时,y有最 值,是 。

4.将函数y=3 (x-4)2的图象沿x轴对折后得到的函数解析式是 ;

将函数y=3(x-4)2的 图象沿y轴对折后得到的函数解析式是 ;

5.把抛物线y=a(x-4)2向左平移6个单位后得到抛物线y=- 3(x-h)2的图象,则a= ,h= .

函数y=(3x+6)2的图象是由函数 的图象向左平移5个单位得到的,其图象开口向 ,对称轴是 ,顶点坐标是 ,当x 时,y随x的增大而增大,当x= 时,y有最 值是 .

6.已知二次函数y=ax2+c ,当x取x1,x2(x1x2), x1,x2分别是a,b两点的横坐标)时,函数值相等,

则当x取x1+x2时,函数值为 ( )

a. a+c b. a-c c. c d. c

7.已知二次函数y=a(x-h)2, 当x=2时有最大值,且此函数的图象经过点(1,-3),求此函数的解析式,并指出当x为何值时,y随x的增大而增大?

幂函数与二次函数教案篇3

教学目标

1. 了解整式方程和一元二次方程的概念;

2. 知道一元二次方程的一般形式,会把一元二次方程化成一般形式,一元二次方程。

3. 通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

教学重点和难点:

重点:一元二次方程的概念和它的一般形式。

难点:对一元二次方程的一般形式的正确理解及其各项系数的确定。

教学建议:

1. 教材分析:

1)知识结构:本小节首先通过实例引出一元二次方程的概念,介绍了一元二次方程的一般形式以及一元二次方程中各项的名称。

2)重点、难点分析

理解一元二次方程的定义:

是一元二次方程 的重要组成部分。方程 ,只有当 时,才叫做一元二次方程。如果 且 ,它就是一元二次方程了。解题时遇到字母系数的方程可能出现以下情况:

(1)一元二次方程的条件是确定的,如方程 ( ),把它化成一般形式为 ,由于 ,所以 ,符合一元二次方程的定义。

(2)条件是用“关于 的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。如“关于 的一元二次方程 ”,这时题中隐含了 的条件,这在解题中是不能忽略的。

(3)方程中含有字母系数的 项,且出现“关于 的方程”这样的语句,就要对方程中的字母系数进行讨论。如:“关于 的方程 ”,这就有两种可能,当 时,它是一元一次方程 ;当 时,它是一元二次方程,解题时就会有不同的结果。

教学目的

1.了解整式方程和一元二次方程的概念;

2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。

3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

教学难点和难点: 重点:

1.一元二次方程的有关概念

2.会把一元二次方程化成一般形式

难点: 一元二次方程的含义.

教学过程设计

一、引入新课

引例:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm、这块铁片应该怎样剪?

分析:1.要解决这个问题,就要求出铁片的长和宽。

2.这个问题用什么数学方法解决?(间接计算即列方程解应用题。

3.让学生自己列出方程 ( x(x十5)=150 )

深入引导:方程x(x十5)=150有人会解吗?你能叫出这个方程的名字吗?

二、新课

1.从上面的引例我们有这样一个感觉:在解决日常生活的计算问题中确需列方程解应用题,但有些方程我们解不了,但必须想办法解出来,初中数学教案《一元二次方程》。事实上初中代数研究的主要对象是方程。这部分内容从初一一直贯穿到初三。到目前为止我们对方程研究的.还很不够,从今天起我们就开始研究这样一类方程--------一元一二次方程(板书课题)

2.什么是―元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程,就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的最高次数是几。如果方程未知数的最高次数是2、这样的整式方程叫做一元二次方程.(板书一元二次方程的定义)

3.强化一元二次方程的概念

下列方程都是整式方程吗?其中哪些是一元一次方程?哪些是一元二次方程?

(1)3x十2=5x―3:

(2)x2=4

(3)(x十3)(3x?4)=(x十2)2;

(4)(x―1)(x―2)=x2十8

从以上4例让学生明白判断一个方程是否是一元二次方程不能只看表面、而是能化简必须先化简、然后再查看这个方程未知数的最高次数是否是2。

4. 一元二次方程概念的延伸

提问:一元二次方程很多吗?你有办法一下写出所有的一元二次方程吗?

引导学生回顾一元二次方程的定义,分析一元二次方程项的情况,启发学生运用字母,找到一元二次方程的一般形式

ax2+bx+c=0 (a≠0)

1).提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠就成了一元一次方程了)。

2).讲解方程中ax2、bx、c各项的名称及a、b的系数名称.

3).强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是“=”的右边必须整理成0。

强化概念(课本p6)

1.说出下列一元二次方程的二次项系数、一次项系数、常数项:

(1)x2十3x十2=o (2)x2―3x十4=0; (3)3x2-5=0

(4)4x2十3x―2=0; (5)3x2―5=0; (6)6x2―x=0。

2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:

(1)6x2=3-7x; (3)3x(x-1)=2(x十2)―4;(5)(3x十2)2=4(x-3)2

课堂小节

(1)本节课主要介绍了一类很重要的方程―一一元二次方程(如果方程未知数的最高次数为2,这样的整式方程叫做一元一二次方程);

(2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左边最多三项、其中二次项、常数项可以不出现、但二次项必须存在。特别注意的是“=”的右边必须整理成0;

(3)要很熟练地说出随便一个一元二次方程中一二次项、一次项、常数项:二次项系数、一次项系数.

课外作业:略

幂函数与二次函数教案篇4

在整个中学数学知识体系中,二次函数占据极其关键且重要的地位,二次函数不仅是中高考数学的重要考点,也是线性数学知识的基础。那老师应该怎么教呢?今天,小编给大家带来初三数学二次函数教案教学方法。

一、 重视每一堂复习课 数学复习课不比新课,讲的都是已经学过的东西,我想许多老师都和我有相同的体会,那就是复习课比新课难上。

二、 重视每一个学生 学生是课堂的主体,离开学生谈课堂效率肯定是行不通的。而我校的学生数学基础大多不太好,上课的积极性普遍不高,对学习的热情也不是很高,这些都是十分现实的事情,既然现状无法更改,那么我们只能去适应它,这就对我们老师提出了更高的要求

三、做好课外与学生的沟通,学生对你教学理念认同和教学常规配合与否,功夫往往在课外,只有在课外与学生多进行交流和沟通,和学生建立起比较深厚的师生情谊,那么最顽皮的学生也能在他喜欢的老师的课堂上听进一点

四、要多了解学生。你对学生的了解更有助于你的教学,特别是在初三总复习间断,及时了解每个学生的复习情况有助于你更好的制定复习计划和备下一堂课,也有利于你更好的改进教学方法。

2二次函数教学方法??

一、 立足教材,夯实双基:进行中考数学复习的时候,要立足于教材,重新梳理教材中的典例和习题,就显得尤为重要.并且要让学生在掌握的基础上,能够做到知识的延伸和迁移,让解题方法、技巧在学生遇到相似问题时,能在头脑中再现

二、 立足课堂,提高效率:做到教师入题海,学生出题海.教师应多做题、多研究近几年的中考试题,并根据本班学生的实际情况,从众多复习资料中,选择适合本班学生的'最佳练习,也可通过对题目的重组。

三、教师在设计教学目标时,要做到胸中有书,目中有人,让每一节课都给学生留有时间,让他们有独立思考、合作探究交流的过程,最大限度的调动学生的参与度,激发他们的学习兴趣,达到最佳的复习效果.

四、激发兴趣,提高质量:兴趣是学习最好的动力,在上复习课时尤为重要.因此,我们在授课的过程中,在关注知识复习的同时,也要关注学生的学习欲望和学习效果,要让学生在学习的过程中体验成功的快感.这样他们才会更有兴趣的学习下去.

3二次函数教学方法二

1.质疑问难是学生自主学习的重要表现,优化课堂结构,激活学生的主体意识,必须鼓励学生质疑问难。教师要创造和谐融合的课堂气氛,允许学生随时“插嘴”、提问、争辩,甚至提出与教师不同的看法。

2.二次函数是初中阶段继一次函数、反比例函数之后,学生要学习的最后一类重要的代数函数,它也是描述现实世界变量之间关系的重要的数学模型。

3.学生有疑而问、质疑问难,是用心思考、自主学习、主动探究的可贵表现,理应得到老师的热情鼓励和赞扬。现在对学生的随时“插嘴”,提出的各种疑难问题,应抱欢迎、鼓励的态度给与肯定,并做出正确的解释。

4.初中阶段主要研究二次函数的概念、图像和性质,用二次函数的观点审视一元二次方程,用二次函数的相关知识分析和解决简单的实际问题。

4二次函数教学方法三

1.教学案例、教学设计、教学实录、教学叙事的区别:教学案例与教案:教案(教学设计)是事先设想的教育教学思路,是对准备实施的教育措施的简要说明,反映的是教学预期;而教学案例则是对已发生的教育教学过程的描述,反映的是教学结果。

2.教学案例与教学实录:它们同样是对教育教学情境的描述,但教学实录是有闻必录(事实判断),而教学案例是根据目的和功能选择内容,并且必须有作者的反思(价值判断)。

3.教学案例与叙事研究的联系与区别:从“情景故事”的意义上讲,教育叙事研究报告也是一种“教育案例”,但“教学案例”特指有典型意义的、包含疑难问题的、多角度描述的经过研究并加上作者反思(或自我点评)的教学叙事;

4.教学案例必须从教学任务分析的目标出发,有意识地选择有关信息,必须事先进行实地作业,因此日常教育叙事日志可以作为写作教学案例的素材积累。

幂函数与二次函数教案篇5

教学目标

【知识与技能】

使学生会用描点法画出函数y=ax2的图象,理解并掌握抛物线的有关概念及其性质.

【过程与方法】

使学生经历探索二次函数y=ax2的图象及性质的过程,获得利用图象研究函数性质的经验,培养学生分析、解决问题的能力.

【情感、态度与价值观】

使学生经历探索二次函数y=ax2的图象和性质的过程,培养学生观察、思考、归纳的良好思维品质.

重点难点

【重点】

使学生理解抛物线的有关概念及性质,会用描点法画出二次函数y=ax2的图象.

?难点】

用描点法画出二次函数y=ax2的图象以及探索二次函数的性质.

教学过程

一、问题引入

1.一次函数的图象是什么?反比例函数的图象是什么?

(一次函数的图象是一条直线,反比例函数的图象是双曲线.)

2.画函数图象的一般步骤是什么?

一般步骤:(1)列表(取几组x,y的对应值);(2)描点(根据表中x,y的数值在坐标平面中描点(x,y));(3)连线(用平滑曲线).

3.二次函数的图象是什么形状?二次函数有哪些性质?

(运用描点法作二次函数的图象,然后观察、分析并归纳得到二次函数的性质.)

二、新课教授

?例1】 画出二次函数y=x2的图象.

解:(1)列表中自变量x可以是任意实数,列表表示几组对应值.

(2)描点:根据上表中x,y的数值在平面直角坐标系中描点(x,y).

(3)连线:用平滑的曲线顺次连接各点,得到函数y=x2的图象,如图所示.

思考:观察二次函数y=x2的图象,思考下列问题:

(1)二次函数y=x2的图象是什么形状?

(2)图象是轴对称图形吗?如果是,它的对称轴是什么?

(3)图象有最低点吗?如果有,最低点的坐标是什么?

师生活动:

教师引导学生在平面直角坐标系中画出二次函数y=x2的图象,通过数形结合解决上面的3个问题.

学生动手画图,观察、讨论并归纳,积极展示探究结果,教师评价.

函数y=x2的图象是一条关于y轴(x=0)对称的曲线,这条曲线叫做抛物线.实际上二次函数的图象都是抛物线.二次函数y=x2的图象可以简称为抛物线y=x2.

由图象可以看出,抛物线y=x2开口向上;y轴是抛物线y=x2的对称轴:抛物线y=x2与它的对称轴的交点(0,0)叫做抛物线的顶点,它是抛物线y=x2的最低点.实际上每条抛物线都有对称轴,抛物线与对称轴的交点叫做抛物线的顶点,顶点是抛物线的最低点或最高点.

?例2】 在同一直角坐标系中,画出函数y=x2及y=2x2的图象.

解:分别填表,再画出它们的图象.

思考:函数y=x2、y=2x2的图象与函数y=x2的图象有什么共同点和不同点?

师生活动:

教师引导学生在平面直角坐标系中画出二次函数y=x2、y=2x2的图象.

学生动手画图,观察、讨论并归纳,回答探究的思路和结果,教师评价.

抛物线y=x2、y=2x2与抛物线y=x2的开口均向上,顶点坐标都是(0,0),函数y=2x2的图象的开口较窄,y=x2的图象的开口较大.

探究1:画出函数y=-x2、y=-x2、y=-2x2的图象,并考虑这些图象有什么共同点和不同点。

师生活动:

学生在平面直角坐标系中画出函数y=-x2、y=-x2、y=-2x2的图象,观察、讨论并归纳.教师巡视学生的探究情况,若发现问题,及时点拨.

学生汇报探究的思路和结果,教师评价,给出图形.

抛物线y=-x2、y=-x2、y=-2x2开口均向下,顶点坐标都是(0,0),函数y=-2x2的图象开口最窄,y=-x2的图象开口最大.

探究2:对比抛物线y=x2和y=-x2,它们关于x轴对称吗?抛物线y=ax2和y=-ax2呢?

师生活动:

学生在平面直角坐标系中画出函数y=x2和y=-x2的图象,观察、讨论并归纳.

教师巡视学生的探究情况,发现问题,及时点拨.

学生汇报探究思路和结果,教师评价,给出图形.

抛物线y=x2、y=-x2的图象关于x轴对称.一般地,抛物线y=ax2和y=-ax2的图象也关于x轴对称.

教师引导学生小结(知识点、规律和方法).

一般地,抛物线y=ax2的对称轴是y轴,顶点是原点.当a0时,抛物线y=ax2的开口向上,顶点是抛物线的最低点,当a越大时,抛物线的开口越小;当a0时,抛物线y=ax2的开口向下,顶点是抛物线的最高点,当a越大时,抛物线的开口越大.

从二次函数y=ax2的图象可以看出:如果a0,当x0时,y随x的增大而减小,当x0时,y随x的增大而增大;如果a0,当x0时,y随x的增大而增大,当x0时,y随x的增大而减小.

三、巩固练习

1.抛物线y=-4x2-4的开口向,顶点坐标是,对称轴是,当x=时,y有最值,是.

?答案】下 (0,-4) x=0 0 大 -4

2.当m≠时,y=(m-1)x2-3m是关于x的二次函数.

?答案】1

3.已知抛物线y=-3x2上两点a(x,-27),b(2,y),则x=,y=.

?答案】-3或3 -12

4.抛物线y=3x2与直线y=kx+3的交点坐标为(2,b),则k=,b=.

?答案】 12

5.已知抛物线的顶点在原点,对称轴为y轴,且经过点(-1,-2),则抛物线的表达式为.

?答案】y=-2x2

6.在同一坐标系中,图象与y=2x2的图象关于x轴对称的是()

a.y=x2b.y=x2

c.y=-2x2 d.y=-x2

?答案】c

7.抛物线y=4x2、y=-2x2、y=x2的图象,开口最大的是()

a.y=x2 b.y=4x2

c.y=-2x2 d.无法确定

?答案】a

8.对于抛物线y=x2和y=-x2在同一坐标系中的位置,下列说法错误的是()

a.两条抛物线关于x轴对称

b.两条抛物线关于原点对称

c.两条抛物线关于y轴对称

d.两条抛物线的交点为原点

?答案】c

四、课堂小结

1.二次函数y=ax2的图象过原点且关于y轴对称,自变量x的取值范围是一切实数.

2.二次函数y=ax2的性质:抛物线y=ax2的对称轴是y轴,顶点是原点.当a0时,抛物线y=x2开口向上,顶点是抛物线的最低点,当a越大时,抛物线的开口越小;当a0时,抛物线y=ax2开口向下,顶点是抛物线的最高点,当a越大时,抛物线的开口越大.

3.二次函数y=ax2的图象可以通过列表、描点、连线三个步骤画出来.

教学反思

本节课的内容主要研究二次函数y=ax2在a取不同值时的图象,并引出抛物线的有关概念,再根据图象总结抛物线的有关性质.整个内容分成:

(1)例1是基础;

(2)在例1的基础之上引入例2,让学生体会a的大小对抛物线开口宽阔程度的影响;

(3)例2及后面的练习探究让学生领会a的正负对抛物线开口方向的影响;

(4)最后让学生比较例1和例2,练习归纳总结。

幂函数与二次函数教案篇6

二次函数的性质与图像(第2课时)

一 学习目标:

1、 掌握二次函数的图象及性质;

2、 会用二次函数的图象与性质解决问题;

学习重点:二次函数的性质;

学习难点:二次函数的性质与图像的应用;

二 知识点回顾:

函数 的性质

函数 函数

图象 a0

性质

三 典型例题:

例 1:已知 是二次函数,求m的值

例 2:(1)已知函数 在区间 上为增函数,求a的范围;

(2)知函数 的单调区间是 ,求a;

例 3:求二次函数 在区间[0,3]上的最大值和最小值;

变式:(1)已知 在[t,t+1]上的最小值为g(t),求g(t)的表达式。

(2)已知 在区间[0,1]内有最大值-5,求a。

(3)已知 ,a0,求 的最值。

四、 限时训练:

1 、如果函数 在区间 上是增函数,那么实数a的`取值

范围为 b

a 、a-2 b、a-2 c、a-6 d、b、a-6

2 、函数 的定义域为[0,m],值域为[ ,-4],则m的取值范围是

a、 b、 c、 d、

3 、定义域为r的二次函数 ,其对称轴为y轴,且在 上为减函数,则下列不等式成立的是

a、 b、

c、 d、

4 、已知函数 在[0,m]上有最大值3,最小值2,则m的取值范围是

a、 b、 c、 d、

5、 函数 ,当 时是减函数,当 时是增函数,则

f(2)=

6、 已知函数 ,有下列命题:

① 为偶函数 ② 的图像与y轴交点的纵坐标为3

③ 在 上为增函数 ④ 有最大值4

7、已知 在区间[0,1]上的最大值为2,求a的值。

8、已知 在[t,t+1]上的最小值为g(t),求g(t)的表达式。

9、已知函数 ,求a的取值范围使 在[-5,5]上是单调函数。

10、设函数 ,当 时 a恒成立,求a的取值范围。

幂函数与二次函数教案篇7

教学目标:

会用待定系数法求二次函数的解析式,能结合二次函数的图象掌握二次函数的性质,能较熟练地利用函数的性质解决函数与圆、三角形、四边形以及方程等知识相结合的'综合题。

重点难点:

重点;用待定系数法求函数的解析式、运用配方法确定二次函数的特征。

难点:会运用二次函数知识解决有关综合问题。

教学过程:

一、例题精析,强化练习,剖析知识点

用待定系数法确定二次函数解析式.

例:根据下列条件,求出二次函数的解析式。

(1)抛物线y=ax2+bx+c经过点(0,1),(1,3),(-1,1)三点。

(2)抛物线顶点p(-1,-8),且过点a(0,-6)。

(3)已知二次函数y=ax2+bx+c的图象过(3,0),(2,-3)两点,并且以x=1为对称轴。

(4)已知二次函数y=ax2+bx+c的图象经过一次函数y=-3/2x+3的图象与x轴、y轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y=a(x-h)2+k的形式。

学生活动:学生小组讨论,题目中的四个小题应选择什么样的函数解析式?并让学生阐述解题方法。

教师归纳:二次函数解析式常用的有三种形式:(1)一般式:y=ax2+bx+c(a≠0)

(2)顶点式:y=a(x-h)2+k(a≠0)(3)两根式:y=a(x-x1)(x-x2)(a≠0)

当已知抛物线上任意三点时,通常设为一般式y=ax2+bx+c形式。

当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式y=a(x-h)2+k形式。

当已知抛物线与x轴的交点或交点横坐标时,通常设为两根式y=a(x-x1)(x-x2)

强化练习:已知二次函数的图象过点a(1,0)和b(2,1),且与y轴交点纵坐标为m。

(1)若m为定值,求此二次函数的解析式;

(2)若二次函数的图象与x轴还有异于点a的另一个交点,求m的取值范围。

二、知识点串联,综合应用

例:如图,抛物线y=ax2+bx+c过点a(-1,0),且经过直线y=x-3与坐标轴的两个交

幂函数与二次函数教案篇8

教学目标:

1. 1. 理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;

2. 2. 通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;

3. 3. 通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。

教学重点:二次函数的意义;会画二次函数图象。

教学难点:描点法画二次函数y=ax2的图象,数与形相互联系。

教学过程设计:

一. 创设情景、建模引入

我们已学习了正比例函数及一次函数,现在来看看下面几个例子:

1.写出圆的半径是r(cm),它的面积s(cm2)与r的关系式

答:s=πr2. ①

2.写出用总长为60m的篱笆围成矩形场地,矩形面积s(m2)与矩形一边长l(m)之间的关系

答:s=l(30-l)=30l-l2 ②

分析:①②两个关系式中s与r、l之间是否存在函数关系?

s是否是r、l的一次函数?

由于①②两个关系式中s不是r、l的一次函数,那么s是r、l的什么函数呢?这样的函数大家能不能猜想一下它叫什么函数呢?

答:二次函数。

这一节课我们将研究二次函数的有关知识。(板书课题)

二. 归纳抽象、形成概念

一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0) ,

那么,y叫做x的二次函数.

注意:(1)必须a≠0,否则就不是二次函数了.而b,c两数可以是零.(2) 由于二次函数的解析式是整式的形式,所以x的'取值范围是任意实数.

练习:1.举例子:请同学举一些二次函数的例子,全班同学判断是否正确。

2.出难题:请同学给大家出示一个函数,请同学判断是否是二次函数。

(若学生考虑不全,教师给予补充。如: ; ; ; 的形式。)

(通过学生观察、归纳定义加深对概念的理解,既培养了学生的实践能力,有培养了学生的探究精神。并通过开放性的练习培养学生思维的发散性、开放性。题目用了一些人性化的词语,也增添了课堂的趣味性。)

由前面一次函数的学习,我们已经知道研究函数一般应按照定义、图象、性质、求解析式几个方面进行研究。二次函数我们也会按照定义、图象、性质、求解析式几个方面进行研究。

(在这里指出学习函数的一般方法,旨在及时进行学法指导;并将此方法形成技能,以指导今后的学习;进一步培养终身学习的能力。)

三. 尝试模仿、巩固提高

让我们先从最简单的二次函数y=ax2入手展开研究

1. 1. 尝试:大家知道一次函数的图象是一条直线,那么二次函数的图象是什么呢?

请同学们画出函数y=x2的图象。

(学生分别画图,教师巡视了解情况。)